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Objectives

Composite wings have become increasingly popular in recent years due to significant

potential of weight savings and stiffness tailoring. Therefore, a composite box beam is being used

to model the principal load carrying member of an airplane wing. A new composite beam

modeling technique is being developed to ensure accuracy. The procedure will be used to

investigate the effect of composite tailoring on aeroelastic stability of airplane wing using formal

design optimization techniques.

Approach

Several approaches addressing composite box beam modeling have been proposed over the

last few years. All of these models have several limitations. In some of these work, classical

laminate theory (CLT) was used and transverse deformations through the wall thickness were

neglected to make the contour analysis easy. For composite structures in which strong elastic

coupling exists, these transverse stresses and strains heavily influence the structural behavior.

Also, in aircraft applications, the assumption of thin-walled sections is not relevant when

composite stiffeners are used. Therefore, it is necessary to develop analysis techniques which can

account for cross sections with arbitrary wall thicknesses. Secondly, in some of the work, the

cross section geometry was assumed to remain rigid during beam deformation and thus in-plane

warping was neglected. However, in-plane warping is important for loaded wing structures with

short aspect ratio. In the existing literature, the out-of-plane warping is also assumed to be small

and with linear variations which is superimposed upon large rigid cross-sectional deformations

without proper justifications. The above drawbacks make these models inadequate for mere

general applications. Therefor, in the present research, a higher order composite laminate theory is

being used to model the displacement field including through-the-thickness variation of transverse

deformations. Both in- and out-of-plane warping are included in the model. The procedure is

briefly described below.
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Refined displacement field: The individual walls of the box beam are modeled as plates with

arbitrary thicknesses. Using the higher order theory, the through-the-thickness displacement

distributions of the plate (Fig. 1) are expressed as follows:

u = uO(x, y) + z _gx(X, y) + z2 _x(X, y) + z 3 ¢x(X, y)

v = vo(x, y) + z _gy(X, y) + z2 _y(X, y) + z 3 Cy(X, y)

w = w0(x, y) + z _z(X, y) + z 2 _z(X, y) + z3 _z(X, y)

(1)

where u, v and w represent the displacements in x, y and z directions respectively (Fig. 1). On the

right side of Eqn. (1), u0, v0, and w0 denote the displacements of a point (x,y) on the reference

plane, and _x, _y and qlz are the rotations of normals with respect to reference plane. The

functions _x, _y, _z, Ox, _y and _z represent higher order terms which are neglected in classical

laminate theory (CLT). The transformation of the higher order plate displacement field into beam

displacement is described below.

The displacement field of every wall is described using the form given by Eqn. (I).

Therefore, using simple superposition, the displacement of an arbitrary point on the box beam

cross section (Fig. 2) is written as follows.

u = Ul0(X, y, 0) + z _lx(X, y) + z2 _lx(X, y) + z 3 Olx(X, y)

+ u20(x, 0, z) + y _2x(X, z) + y2 _2x(X, z) + y3 02x(X, z)

v = Vl0(X, y, 0) + z _ly(X, y) + z2 _ly(X, y) + z 3 ely(X, y)

+ v20(x, 0, z) + y _/2y(X, z) + y2 _2y(X, z) + y3 O2y(X, z) (2)

w = wl0(x, y, 0) + z _lz(X, y) + z2 _lz(X, y) + z3 ¢lz(X, y)

+ w20(x, 0, z) + y _2z(X, z) + y2 _2z(X, z) + y3 _2z(X, z)

Taylor series expansions are then used to reduce redundancy in the above expression. After using

an ordering scheme and collecting terms, the beam displacement field is now expressed as

follows.

u(x, y, z) = u0(x) + z ax(x, y)+ z2 bx(x, y) + z 3 Cx(X, y)

+ y dx(x, z) + y2 ex(x, z) + y3 fx(x, z)

v(x, y, z) = v0(x) + z ay(x, y)+ z2 by(x, y) + z 3 Cy(X, y)

+ y dy(x, z) + y2 ey(x, z) + y3 fy(x, z)

(3)



w(x, y, z) = w0(x) + z az(x, y)+ z2 bz(x, y) + z 3 Cz(X, y)

+ y dz(x, z) + y2 ez(x, z) + y3 fz(x, z)

where u(x, y, z), v(x, y, z) and w(x, y, z) represent the beam displacement functions along x, y,

and z directions, respectively. The quantities u0(x), v0(x) and w0(x) are the displacements of the

original point in the coordinate system described in Fig. 2. The functions ai(x, y), bi(x, y), ci(x,

y), di(x, z), ei(x, z) and fi(x, z) where i = x, y, z, represent combinations of rigid cross-sectional

rotations and both in- and out-of-plane warpings.

The final step is to make y and z explicit and displacement functions only implicit along x.

Noticing that the sine and cosine functions are basic solutions (mode shapes) for the plate bending

problem, all the y dependent functions are expanded along beam width and all the z dependent

functions are expanded along beam height. This reduces the complexity of the problem since the y

and z dependencies are now expressed explicitly. The displacement functions are now only

implicit along x. Expansions are based on first five basic mode shapes of the box beam cross

section. Thus, a quasi one-dimensional beam displacement field with 93 x dependent unknown

functions is obtained.

Numerical solution: Structural response under prescribed load are calculated using the finite

elements method. Within each element, the quasi one-dimensional displacement field is

interpolated using spanwise cubic shape functions which results in 372 unknowns per element. A

weak formulation based on Lagrangian approach is used to arrive at the following dynamic

equations of motion:

MiI'+ CO+ Kq = F (4)

where M, C and K are the mass, the damping and the stiffness matrices, respectively and F is the

forcing function corresponding to the nodal degrees of freedom q.

Results

At present results have been obtained for both first and second order theories by retaining

second order terms in the displacement fields (Eqn. 1). Computations have been performed on

composite beams with different wall thickness and slenderness (Fig. 1 and Table 1) using both the

first and the second order model. Two stacking sequence configurations of (0/90 ° ) symmetric and

(450/-45 ° ) symmetric have been used for the walls of the composite beam. The later configuration

results in the bending/twist coupling. A vertical load is applied at every beam tip.

Results from the new theories are compared with those obtained using a model based on

the classical laminate theory (CLT) and are presented in Tables 2 and 3. This simplified model
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ignoresextensionandsheartermsandonly considers bending about the y axis and torsion about

the x axis. Thus it under predicts beam bending and twist since the transverse in plane strains in

the horizontal and vertical laminates are not accounted for in the analysis. From Tables 2 and 3 it is

observed that both the first and the second order models show significant improvements over the

simplified CLT model, particularly for short beams where stronger bending/twist coupling exists.

For slender beams shear strain has little influence on bending deformation and therefore better

agreement between the theories exists.
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Figure 1 Box beam with tip load
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Figure 2. Box beam cross section
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Table 1 Beam dimensions

Beam L b h t Ply stacking
No. (mm) (mm) (mm) (mm)

1 200 50 20 0.6 [0190o/0]s

2 500 50 20 0.6 [45o/-45o/45O]s

3 80 20 20 2 [0/90o/0/90o/0]s

4 80 20 20 2 [45o/-45o/45o/-45o/45O]s

Table 2 Comparison of results

Beam No.

It

2t

3t

4tt

CLT

0.03595

1.18

0.001548

0.4531

Tip Displacement (mm)

1st. Order

Theory

0.03976

(10.6%)*
1.34

(13.6%)*
0.003821

(146.8%)*

0.5771

(27.4%)*

2nd. Order

Theory

0.04383

(21.9%)*
1.49

(26.3%)*
0.004812

(210.9%)*

0.7625

(68.3%)*

Table 3 Comparison of results

Beam No.

2t

4+t

CLT

-0.00015

-0.00015

Tip Twist (degree)

1st. Order

Theory

-0.00036

(140.0%)*
-0.00087

(433.3%)*

2nd. Order

Theory
-0.0004

(166.7%)*
-0.0011

(633.3%)*

t Deformation under unit tip load.

tt Deformation under 100N tip load.
* Percentage deviation from CLT.


